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PART I. METHOD OF PATH COEFFICIENTS 

INTRODUCTION 

The ideal method of science is the study of the direct influence of one 
condition on another in experiments in which all other possible causes 
of variation are eliminated. Unfortunately, causes of variation often 
seem to be beyond control. In the biological sciences, especially, one 
often has to deal with a group of characteristics or conditions which are 
correlated because of a complex of interacting, uncontrollable, and often 
obscure causes. The degree of correlation between two variables can be 
calculated by well-known methods, but when it is found it gives merely 
the resultant of all connecting paths of influence. 

The present paper is an attempt to present a method of measuring the 
direct influence along each separate path in such a system and thus of 
finding the degree to which variation of a given effect is determined by 
each particular cause. The method depends on the combination of 
knowledge of the degrees of correlation among the variables in a system 
with such knowledge as may be possessed of the causal relations. In cases 
in which the causal relations are uncertain the method can be used to 
find the logical consequences of any particular hypothesis in regard to 
them. 

CORRELATION 

Relations between variables which can be measured quantitatively are 
usually expressed in terms of Galton's  (4)1 coeflicient of correlation, 

ZX'Y' 
rXY =  (the ratio of the average product of deviations of X and Y to 

IICT-JCO'Y 

the product of their standard deviations), or of Pearson's (7) correlation 

*( u) 
ratio, 7jx. y =   VLJE/ (the ratio of the standard deviation of the mean values 

ox 
of X for each value of Y to the total standard deviation of X), the 
standard deviation being the square root of the mean square deviation. 

Use of the coefficient of correlation (r) assumes that there is a linear 
relation between the two variables—that is, that a given change in one 
variable always involves a certain constant change in the corresponding 
average value of the other.    The value of the coefficient can never exceed 

1 Reference is made by number (italic) to "lyiterature cited," p. 585. 
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+ i or — i. For many purposes it is enough to look on it as giving an 
arbitrary scale between + i for perfect positive correlation, o for no corre- 
lation, and — i for perfect negative correlation. 

The correlation ratio (77) equals the coefíicient of correlation if the rela- 
tion between the variables is exactly linear. It does not, however, depend 
on the assumption of such a relation, and it is always larger than r when 
the relations are not exactly linear. It can only take values between 
O and 4-1, and it can be looked upon as giving an arbitrary scale between 
o for no correlation and 1 for perfect correlation. 

The numerical value of the coefficient of correlation (r) takes on added 
significance in connection with the idea of regression. It gives the aver- 
age deviation of either variable from its mean value corresponding to a 
given deviation of the other variable, provided that the standard devia- 
tion is the unit of measurement in both cases. The regression in terms 
of the actual units can, of course, be obtained by multiplying by the 
ratio of the standard deviations. Thus, for the deviation of X correspond- 

ing to a unit deviation of V, we have ^X-Y^'XY"^'   This formula may 

be deduced from the theory of least squares as the best linear expression 
for X in terms of Y. The formula for what Gal ton later called the coeffi- 
cient of correlation was, in fact, first presented in this connection by 
Bravais (1) in 1846. Any such interpretation is of course impossible 
with the correlation ratio. 

The numerical values of both coefficients, however, have significance in 
another way. Their squares (rj2, or r2 if regression is linear) measure the 
portion of the variability of one of the variables which is determined by 
the other and which disappears in data in which the second is constant. 
Thus if y0-2x is the mean square deviation of X for constant Y, Pearson 
has shown that : 

=
 <7

2
X(I-ï?

2
X-Y) 

or Yí7
2
X = O"

2
X(

I
— *'

2
XY) if regression is linear. 

It often happens that it is desirable to consider simultaneously the 
relations in a system of more than two variables. For such cases, involv- 
ing only linear relations between the various pairs of variables, Pearson (6) 
has devised the coefficient of multiple correlation. 

/    r 
A

X(ABC • • • N) = A/ I - ¿— 

in which 
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and Axx is the minor made by deleting row X and column X. 
R

2
X(ABC'"N) measures the degree of  determination of  X by the whole 

set of other factors, and 1 — í?2
X(ABC- • •N) 

=
 X— *s ^le maximum possible 

squared correlation between X and a factor independent of those con- 
sidered. This formula for multiple correlation leads to one for multiple 
regression. Letting X', A', Bf, etc., be the deviations of variables X, 
Ay B, etc., from their mean values, Pearson has shown that the most 
probable value of X' for known values of the other variables is given by 
the formula 

0-x 

AxA 

Axx 

^' + AxB 
^A    Axx OB 

• 

crx' = N • • • DA LÖX 

AXNiV' 

= <TXV£ 
Analogous but more complex formulae have recently been published 

by Isserlis (5) for the multiple correlation ratio for use in cases in which 
the regressions are not necessarily linear. 

CAUSATION 

In all the preceding results no account is taken of the nature of the 
relationship between the variables. The calculations thus neglect a very 
important part of the knowledge which we often possess. There are 
usually a priori or experimental grounds for believing that certain factors 
are direct causes of variation in others or that other pairs are related as 
effects of a common cause. In many cases, again, there is an obvious 
mathematical relationship between variables, as between a sum and its 
components or between a product and its factors. A correlation between 
the length and volume of a body is an example of this kind. Just because 
it involves no assumptions in regard to the nature of the relationship, a 
coefficient of correlation may be looked upon as a fact pertaining to the 
description of a particular population only to be questioned on the grounds 
of inaccuracy in computation. But it would often be desirable to use a 
method of analysis by which the knowledge that we have in regard to 
causal relations may be combined with the knowledge of the degree of 
relationship furnished by the coefficients of correlation. 

The problem can best be presented by using a concrete example. In 
a population of guinea pigs it will be found that the birth weights, early 
gains, sizes of litters, and gestation periods are all more or less closely 
correlated with each other. The influence of heredity, environmental 
conditions, health of dam, etc., are also easily shown. In a rough way, 
at least, it is easy to see why these variables are correlated with each other. 
These relations can be represented conveniently in a diagram like that 
in figure 1, in which the paths of influence are shown by arrows. 
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The variety and complexity of the relations which may be back of a 
correlation are well illustrated in this case. Thus, the weight at weaning 
(33 days of age) should be correlated with the birth weight and with the 
gain between birth and weaning simply because it is their sum. The 
relations of birth weight with gestation period and the prenatal rate of 
growth are also essentially mathematical rather than causal. Birth 
weight is necessarily fully determined by the character of the prenatal 
growth curve and the time at wrliich this is interrupted by birth. 

In the relation between gestation period and size of litter we come to 
a case in which there is no necessary mathematical relationship. We 
naturally attempt to account for the high negative correlation by the 
hypothesis that a large number in a litter in some way causes early 

We/çAfaf 
¿?/£f/7 

* + 
0-3Jafoys 

\ 

„ + tfàte of 
Grosvf/? 

^f 

Y 

óesfáf/oA 
Per/od 
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Concl¡t¡or?s\ 

Conc/jY'/on 
of û&ST? 

/Verecf/ftA 
of ûanyx 

FIG. 1.—Diagram illustrating the interrelations among the factors which determine the weight of guinea 
pigs at birth and at weaning (33 days). 

parturition. Similarly, a large number in a litter might be expected to 
be a cause of slow growth in the foetuses. 

Birth weight and gain after birth are highly correlated. Here neither 
variable can be spoken of as the cause of variation in the other, and the 
relation is not mathematical. They are evidently influenced by common 
causes, among which heredity, size of litter, and conditions which affect 
the health of the dam up to the time of birth at once come to mind. 

Most of the variables are connected with each other through more than 
one path. Thus, weight at birth is correlated with weight at weaning 
both as a component of a sum and as the effect of common causes. 

There may be a conflict of the paths. Thus, a large number in a litter 
has a fairly direct tendency to shorten the gestation period, but this is 
probably balanced in part by its tendency to reduce the rate of growth 
of the foetuses, slow growTth permitting a longer gestation period. Large 
litters tend to reduce gestation period and rate of growth before and 
after birth.    But large litters are themselves most apt to come when 
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external conditions are favorable, which also favors long gestation periods 
and vigorous growth. 

The coefficient of correlation is a resultant of all paths connecting the 
two variables. It would be valuable in many cases to be able to deter- 
mine the relative importance of each particular path. The usual method 
in such cases is to calculate the partial correlation between two variables 
for a third constant, using Pearson's well-known formula 

 ^AH        ^AC^HC  

for correlation between A and B for constant C. Such partial correla- 
tions, however, must be interpreted with caution. It is true that by 
making constant a connecting link between two variables, whether it is 
a common cause or the cause of one and eiTect of the other, we eliminate 
the path in question. This elimination of connecting paths in which the 
constant factor is a link is not, however, the only way in which correlation 
is affected. If an effect of a number of causes is made constant, spurious 
negative correlations appear among the causes and their other effects. 
Thus, if weight at 33 days is made constant, the correlation between 
birth weight and gain necessarily becomes — 1. We are simply picking 
out a population in which any deficiencies in birth weight happen to be 
exactly balanced by excess in gain after birth. This is an extreme case, 
but where the relations of cause and effect are at all complex it is evident 
that the correlation between two variables may be changed in more than 
one way by making a third variable constant, making the interpretation 
doubtful. 

Where there is a network of causes and effects, the interrelations could 
be grasped best if a coefficient could be assigned to each path in the 
diagram designed to measure the direct influence along it. The following 
is an attempt to provide such a coefficient, which may be called a path 
coefficient. 

DEFINITIONS 

We will start with the assumption that the direct influence along a 
given path can be measured by the standard deviation remaining in the 
effect after all other possible paths of influence are eliminated, while 
variation of the causes back of the given path is kept as great as ever, 
regardless of their relations to the other variables which have been made 
constant. Let X be the dependent variable or effect and A the inde- 
pendent variable or cause. The expression o-x.A will be used for the 
standard deviation of X, which is found under the foregoing conditions, 
and may be read as the standard deviation of X due to A. Ina system 
in which variation of X is completely determined by A, B, and C we 
have O-X-A^^CB^X representing the constant factors, B and C, and 
also the variation of A itself (aA) by subscripts to the left.    The path 
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coefficient for the path from A to X will be defined as the ratio of the 
standard deviation of X due to A to the total standard deviation of X. 

Px-A- 

Just as the regression of X on A is expressed by rXY-* the deviation 
^A 

of X directly caused by a unit deviation of A is given by the formula 

Another coefficient which it will be convenient to use, the coefficient 
of determination of X by A, </x.A, measures the fraction of complete 
determination for which factor A is directly responsible in the given 
system of factors. This definition implies that the sum of such coefficients 
must equal unity if all causes are accounted for. 

SYSTEMS  OF  INDEPENDENT  CAUSES 

The degree of determination of one variable by another is most easily 
found where the variables are connected by a mathematical relationship. 
The simplest mathematical relationship is that between a sum and its 
components. For the standard deviation of a sum the following relation 
is well known : 

SM' + ß')2 

* A+H ^ --'—~ = ^ A + o- « + 2crAc7nrAll. 

If A and B are independent of each other, rAB = 0, and we have 

0-2A+B = ^2A + 0'2B. 

The degree to which variation of the sum is determined by that of eacli 
component is obvious. 

2 2 
dx.x = ^r and dx.B-=^y  where X = A + B, 

giving dx.A-{-dx.B = ij as required by definition. 
For the standard deviation of X due to A we have in this case, ö'X.A = O-A. 

Thus, />X-A = —= — by definition. ax      <TX 

Again, rXA=-^ l—■ = —— = —• 
^ n<jxcrK    wo-x<rA    (TX 

Summing up, />X.A = V^X-A = rXK. 
It can easily be shown that the same formulae hold in case we are 

dealing with the sum of multiples of a number of independent factors 
instead of with their own sum. 

We can pass at once from this case to cases in which variation of X is 
caused in the physical or physiological sense by variation in several causes 
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provided that these causes are independent of each other, have linear 
relations to the dependent variable X, and that the deviations which they 
determine are additive. They are independent of each other if there is 
no correlation between their variations. A cause has a linear relation to 
the effect and is combined additively with the other factors if a given 
amount of change in it always determines the same change in the effect, 
regardless of its own absolute value or that of the other causes. The con- 
clusion is that, under these conditions, the path coefficient equals the 
coefficient of correlation between cause and effect, and the degree of 
determination equals the square of either of the preceding coefficients. 

CHAINS OF  CAUSES 

If we know the extent to which a variable X is determined by a cer- 
tain cause M, which is independent of other causes, combines with them 
additively, and acts on X in a linear manner, and if we know the extent 
to which M is determined by a i;iore remote cause A, the degree of deter- 
mination of X by A must be the product of the component degrees of 
determination. 

Let    X-M + N, andM = A+B 

7 ?
2

M   7     _^A  nflrl   ,     _^A 
^x'M " -2 > "M'A     _.2 » ana ax.A      «  * 

a x a M "x 

ThUS  C/X.A = ^X-M^M.A 

and Px'x = PX'UPM^' 

NONADDITIVE  FACTORS 

In cases in which a factor does not act additively with the other factors 
in determining the variations in the dependent variable, its inlluence on 
the latter can not be completely expressed apart from the other factors, 
at least in terms of the ordinary measures of variability. This can be 
made clearer by an illustration. Multiplying factors are among the most 
important of those which do not combine by addition. 

Let X = AB and assume that rAB = o 
ylA

,2Rf2 

where A/ and B' are deviations of A and B from their mean values AfA 

and MB.    Putting B constant,  we   have  <T
2
X.A = M

2
BO-

2
A;  and  similarly 

putting A constant, we have cr2x.B == M2
Ao-2B.   There remains a portion of a2

x 

which is due to A and B jointly and which can not be separated into parts 
M2 a2 

due to each alone.    If we write dx.x = ——— as the degree of determi- 
^ X 

M2 a2 

nation of X by variation of A alone, and  dx.B = —f—~ as the corre- 
^ X 

spending degree of determination of X by variation of B alone, we must 
2/1'

2
JB

/2 

recognize an additional term GL.¿S = ¿—' in order that the sum of the 
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coefficients of determination may equal unity.     Regression is linear and 

r2xx = ViX'Af= 
MV3 

Thus  dx.A = r2
XA   as   in   the  case  of   independent 

additive factors.    The term    =—  is small unless  the amounts of 
n(T X 

variation in A and B are large in comparison with the mean values.    In 
many cases it is safe to deal with path coefficients and degrees of deter- 
mination in the case of multiplying factors just as in the case of addi- 
tive factors. 

As a concrete illustration of these points take two independent vari- 
ables, for each of which the values 1, 2, and 3 occur in the frequencies 
1,2, and 1, respectively. Below is the correlation table between one of 
these factors and their product. 

Product (X). 

I  
2  

1 2 3 4 5 6 7 8 9 

<j 
I 2 

2 
1 

1 

4 
8 
4 

^ 4 2 
2 0 3  I 

I 4 2 4 O 4 O 0 I 16 

MA = 2    o-A=Vi/2      rAX=='^/S/T7      dx.A = 8fi7 
2A'2B'2 dx.B=8/l7 

^X-AB = 
I/I7 

In this case the amounts of variation in the factors are relatively large 
compared with their mean values, making the distribution surface mark- 
edly heteroscedastic, yet the degree of determination by either factor 
comes out only slightly less than one-half. 

NONUNKAR  RELATIONS 

a( M ) 
Pearson's definition of the correlation ratio, 77X.A = —-—-J   has already 

vx 
been given. The variations of the mean value of X for different values 
of A are the variations which can be attributed to the direct influence of 
A, assuming that A is cause, X effect, and that other causes are com- 
bined with A additively. Thus ö-X.A = ö"(A

M
X) 

and we have at once 
px>A = 'nx-A. 

Again, as the total variation of X is composed of the variation of its 
mean values for different values of Ay plus the variation about these 

mean values, we have ö-
2
X = ö-

2
(A

M
X) +A0-

2
X, giving A<r2x = o-2x (I-VX-A), as 

already noted. 
Thus rj2X'A measures the portion of ö-

2
X lost by making A constant, so 

that as before dx.A = ri2x.A = p2
x.A. 
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Unfortunately we can not deal with chains of factors which involve 
nonlinear relations by mere multiplication of the path coefficients of the 
component links. In the present paper, unless otherwise stated, it will 
be   assumed   that   all   correlations- are * 
essentially linear. ./ rl 

EFFECTS OF COMMON  CAUSES 

Suppose that two variables, X and V, 
are affected by a number of causes in 
common, (£, C, D). Let A represent 
causes affecting X alone and E causes 
affecting Y alone (fig. 2). 

Let px.A = a pY-A=0 

pX'B=b pY.B=b' 

px-c = c PY.C=C' 

px.D = d pY.D = d' 

/>X.E = O pY.E = e' 

By Cy and D are assumed to be in- 
dependent of each other—that is, rBC = o, 
etc. 

Hence px.B = rxB, etc. 

B XY 

FIG. 2.—Diagram showing relations be- 
tween two variables, X and V, whose 
values are determined in part by com- 
mon causes, B, C, and D, which are in- 
dependent of each other. 

-66' 
V(i-62) (i-6") 

B^XY — B^XC B^YC rxY—bb'—cc' 
CBXY     V(I-B^XC) (I-BHYO)     V(I-¿

2
-C

2
)(I-6'

2
-C'

2
). 

When  all  common   causes   have   been  made   constant,   DCBrxY = o 
rxY = bb' + cc' + dd ' = 2/>.X.B/>Y.B. 

Thus, in those cases in which the causes are independent of each other, 
the correlation between two variables equals the sum of the products of 

the pairs of path coefficients which con- 
nect the two variables with each common 
cause. An illustration of the use of this 
principle was given in an earlier paper 
{8) in analyzing the nature of size factors 

r^r     /      "^   ^^      in rabbits. 
^r G Çy It may be deduced from the foregoing 

FIG. 3.—Diagram showing ' relations be- foruiula that two variables may even be 
tween two variables, x and Y, whose completely determined by the same factors 
values  are  completely   determined   by x J •/ 

X 

common causes, B and C, which are in- 
dependent of each other. 

and yet be uncorrelated with each other. 
Let variation of X be completely deter- 

mined by factors B and C, the path coefficients being b and c, respectively. 
Let Y be completely determined by the same factors, the path coeffi- 
cients being b' and  c' (fig. 3).   Then rxY^&'+cc'.   The  condition 
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under which rXY may equal zero is evidently that bb' = —cc'. An 
example may be found in the absence of correlation between the sum 
and difference of pairs of numbers picked at random from a table. 

In many cases a small actual correlation between variables will be 
found on analysis to be the resultant of a balancing of very much more 
important but opposed paths of influence leading from common causes. 

SYSTEMS  OF  CORRICLATKD  CAUSKS 

The discussion up to this point has dealt wholly witli causes which 
act independently of each other. It is necessary to consider the ciTccts 
of correlation among the causes. 

Let us consider the sum of two correlated variables (fig. 4). 

LetX = M + N 

v2x = <r2M + <7
2

N + 2o-Mo-NrMN. 

We have denned ö-X.M as the standard deviation of X when factors 
other than M are constant, but M varies as much as before. The latter 
qualification is important in the present case, since the making of N 

constant tends to reduce the variation of M, reducing o-M to <rMVi —''2MN- 

The definition of <7-x.M implies that 
not only is N made constant but 
that there is such a readjustment 
among the more remote causes, A, 
B, and C, that a-M is unchanged. 
Under the definition it is evident 
that in this case <TX.JA = (TM and o-x.N 

FIG. 4.—A system in which the value of variable 
X is completely determined by causes M and N, 
which are correlated with each other. 

Thus Px-u-'f and ^X.N= 
O-x' 

In attempting to find the degrees 
of determination of X by M and N 

we meet a diificulty somewhat similar to that met in the case of non- 
additive factors. The squared standard deviation is made up in part 
of elements due wholly to M and N, respectively, but in part to a portion 
which can not be divided between them. The term 2(rMo-NrMN is due 
solely to the fact that the variations of X, which M and N determine, 
tend to be in the same direction and so have greater effect than if varia- 
tions M and N were combined at random.    It seems best to define </x.M 

as the degree of determination of X due to M alone.    Thus C/V-M^^ 

^X'N- -j--   The remaining term may be considered as determination by 
v  X J 

M and N jointly and may be written dx^= 2/>x.M/>x.NrMN. 

These rules can be extended at once to the sums of more than two 
variables, to sums of multiples of variables, and hence, as before, to 



Jan. 3, 1921 Correlation and Causation 567 

linear relations of cause and effect in which the influence of the causes is 
combined additively. It is also easy to show that the formulae apply 
approximately for multiplying factors. 

Summing up, />X.M= V^x-M^-p 
^x 

2i/x.M + 2Z/>x.M/>x.KrMN=s I- 

The next problem is to find the 
degree of determination of X by a 
factor such as B, which is connect- 
ed with X by more than one path 

(fig. 5). 
Assume that A, B, C, and D are 

independent and completely deter- 
mine X. dji.A + dx.n + dx.c + (lx.D= 1. 

But also ^X-M4-^X-N + 
2
/

?
X-M/

?
X.N^MN + 

ÍÍX.D=I. 

X'B X'M X'A T"    X'N   ^      X*C "T ;pIG   5.—A system in which the value of A"" is af- 
2/?x-M/?x-N/?M-B/7N-B>rememkeringthat iected by a factor, /?, along two different paths, 
..     _ L.       L. BMX and BNX. 
'MN— rM'BrN-B- 

Since í¿M.A-MM.B=I> etc., we have ^X.M
=

^X-M^M-A + ^X-M^M.B
==:

^X-A + 

dx-udjA-nj an(^ "-X-N—^X'C + ^X-N^N-B- 

Therefore dx.B=dx^dM.B +iix.N^N.B + ¿PX-MPX-NPU-BPN-B 

= P2X'Up2M-n + P2
X'NP

2
N'B + 2PX-MPX'XPU'BPK B 

= (/
,
X-M/

?
M-B+/>X-N/

?
N-B)

2 

Px'B^ Px'-MpJA'B + PX-KPN-B- 

These results are easily extended to cases in which B acts on X through 
any number of causes. If a path coefficient is assigned to each com- 
ponent path, the combined path coefficient for all paths connecting an 
effect with a remote cause equals the sum of the products of the path 
coefficients along all the paths. Since B is independent of A , C, and 

U* rX'B~Px'B— PX-MPM.'B~\~rx-NrN-B- 

GENERAI/  FORMULA 

We are now in a position to express the correlation between any two 
variables in terms of path coefficients. Let X and Y be two variables 
which are affected by correlated causes M and N. Represent the various 
path coefficients by small letters as in the diagram. Let A, B, and C be 
hypothetical remote causes which are independent of each other (fig. 6). 

rXY=Px-ApY-A + PX'BPY-B + P'CpY-C 
^mam'a + ímb + nb^ím'b + n'b^+ncn'c 
— mm'+mbb'n'+nn'+nb'bm'. 
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Thus, the correlation between two variables is equal to the sum of the 
products of the chains of path coefficients along all of the paths by 
which they are connected. 

If we know only the effects, X and Y, and correlated causes, such as 
M and Nf it will be well to substitute rMN for bb' in the foregoing formula. 

We have reached a general formula expressing correlation in terms of 
path coefficients. This is not the order in which knowledge of the coeffi- 
cients must be obtained, but, nevertheless, by means of simultaneous 
equations the values of the path coefficients in a systeiji can often be 
calculated from the known correlations. Additional equations are fur- 
nished by the principle that the sum of the degrees of determination must 

FIG. 6. Diagram showing relations between two 
variables, X and Y, whose values are de- 
termined in part by common causes, M and 
iV, which are correlated with each other. 

J-. 
.^^p 

^ 

FIG. 7.—Simplified   diagram   of   factors which 
determine birth weight in guinea pigs. 

equal unity.    The fundamental equations can be written in general form 
as follows: 

^X-A = r'x-A 

^X-^ 
=

 
2
/

?
X-A/

?
X-B^AB 

rXY = 2/?x.A/?Y.A. 

APPLICATION  TO   BIRTH  WEIGHT  OF  GUINEA   PIGS 

As a simple example, we may consider the factors which determine 
birth weight in guinea pigs (fig. 7). 

Let X be birth weight; g, prenatal growth curve; P, gestation period; 
L, size of litter; A, hereditary and environmental factors which deter- 
mine g, apart from size of litter; C, factors determining gestation period 
apart from size of litter. 

For the sake of simplicity, it will be assumed that the interval between 
litters (if less than 75 days) accurately measures the gestation period 
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and that the variables are connected only by the paths shown above. 
In a certain stock of guinea pigs the following correlations were found : 

Birth weight with interval, rxp= +0'5547- 

Birth weight with litter,      rXL = — 0.6578. 

Interval with litter, rpL = —0.4444. 

We are able to form three equations of type rxv = 2/>x.A/>y.A and three 
of type 2/>2

x.A + 22/>x.A/>x.BrAB= 1. These six equations will enable us 
to calculate six unknown quantities. The six path coefficients in the 
diagram in figure 7 can thus be calculated from the information given 
here, but no others. 

The equations are as follows : 

(1)       ■ 

(2) 

(3) 

(4X 

(5) 

(6) 

From (3), 
From (6), 

rxp= -I- 0.5547 = p + qll'- 

rXL= - O.6578 = ql+pl\ 

rPL = — 0.4444 = 1'. 

q2 + p2+2qpll'=i. 

a2 + /3=i. 

/'2-f-c2=i. 

pp.L=l'= -0.4444 
pP.c = c =     o. 8958 

d      —I'2 
«O.    I975 
=      .   8O25 

From (1) and (2), px.r = p =    o. 3269 
ql=— 0.5125 

From (4), Px-a^q =    o. 8627 

PQ-L = 1 =—0. 5941 
/>Q.A = a =    o. 8044 

1. 0000 

,/.,.,, =/>= = 0. 1069 
dx-Q =q2 = .7442 
</x.,;Q=2/>,///' = .1489 

1.0000 

d,.L =^ =0.3530 

4i-A = «2 = .6470 

1. 0000 

¿X-QL    =?2^ =-0. 2627 
¿X.P.L    =^/'» ==  . 0211 

<ix-r^=2pqir - . 1489 

dx.L  ={qi+piy = •4327 

dxA = <72tt2 =.4815 
d^=P2à = .0858 

I. 0000 
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Assuming that the diagrams in figures 7, 8, and 9 accurately represent 
the causal relations, it appears that birth weight is determined to a very 
much greater extent by variations in the rate of growth of the foetuses 

than by variations in the length of 
the gestation period (í/X.Q = O.74, 

c/x.p = o.ii). Size of litter has much 
more effect on birth weight by re- 
ducing the rate of growth of the 
foetuses than by causing early partu- 
rition (dXtQ,L = 0.26, dx.p.L = o.02). The 
difference in birth weight caused 
by a difference of a day in gestation 
period can be calculated from the path 
coefficient and the standard deviations 

FIG. 8.—Path coefficients measuring the rela- 
tions between birth rate (X), rateoj growth 
(Q), gestation period (P), size of litter (£,), 
and other causes (^4, C). 

by the formula for path regression, p. regx-v --px.i*--  The result, 3.34 
o-p 

gm. per day, should measure the average rate of growth just preceding 
parturition. The actual regression, 5.66 gm. per day of delay in parturi- 
tion, is larger because a long gestation period means not merely a longer 
time for growth but also, in general, a smaller litter and hence more 
rapid growth. 

On introducing other data the analysis can be carried much farther. 
There are other paths of influence which should be recognized, positive 
paths connecting A, C, and L, representing the favorable effects of good 
health in the dam on rate of growth, gestation period, and size of litter, 
and a negative path from Q to P 
to represent the tendency of rapid 
growth to induce early parturition. 
The relations between the observed 
interval between litters and the ac- 
tual gestation period should also be 
considered. The results presented 
here are thus intended merely to fur- 
nish     a    Simple    illustration    Of      the   FIG. 9.—Coefficients of determination.   Symbols 
method.    A more complete analysis as in figure 7. 
of the relations among the factors which affect birth weight and later 
growth will be presented in a later paper. 

DETERMINATION IN TERMS OF CORRELATION 

Having obtained a formula for correlation in terms of determination, 
the question arises whether the converse is possible. For a special class 
of cases such a formula is easily obtained. 
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For a single cause and effect the required formula is merely dx.A = r2
x¿ 

(fig. 10). 

FIG. 10.—Effect and one known cause. 

The degree of determination by residual factors; that is, </x.o, is thus 

i-r2xA- 
If two causes are known, and the degree of correlation between them, 

we have (fig. 11)— 

FIG. 11.—Effect and two correlated known causes. 

B*' XA "T B'  XO ~ ! 

(/XA       ^XB^'AB) _              ^ XO  

(I-^
2
XB)(I-^AB) I-í'

2
XB 

Y2     =d      = ' xo     ax-o — 
1        r  XA        ^XB        1   AB T" SI'XA^ XR^ AB 

FIG. 12.—Effect and three correlated known causes. 

If three causes and their correlations are known (fig.  12), we have 

B^
2

XA + CB^
2
XO= if from which 

o    _ ^     _ I - Sr2xA + 22rXArAnrRX - 2^rXArAnrncrcx + Sr2xA^2Bc 
'    TO W-T'O •) o o T-- —~      • XO —^x-o 

1       Y AB       ^ AC "" *' BC + 2;'AC,'cBrBA 
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In this expression 2r2
XA means the sum of squares of the six known 

correlations. SrXArABrBX means the sum of the products of the groups of 
three correlations, corresponding to the sides of triangles. There are four 
of these triangles, XAC, XAB, XCB, ABC. SrXArABrBCrcx means the 
sum of the three products of the groups of correlations which are 
arranged in closed quadrilaterals, and 2r2

XAr
2
BC means the sum of the 

product of squared correlations in pairs ¿vliich involve no common vari- 
able (r2

XAr
2 

c) (fig. 13). 
The formula for four known causes is easily found by a continuation 

of the methods used to find the others if attention is paid to the sym- 
metry ol the expressions. Since, how- 
ever, this formula, as well as that just 
given for the case of three causes, is some- 
what cumbersome, it will be convenient 
to use a more condensed notation. 
<j>(XABC . . .) may be used for a func- 
tion involving all possible correlations 
among the variables (XABC . . .). In 
the definitions Sr2 means the sum of the 

FlG. 13.—Effect and four correlated known   Squares of all correlations; ^f2?'2,  the SUlll 
causes. »      * 1 en« 

of the product of all pairs of squared 
correlations which involve no variables in common; 2rrr, Srrrr, and 
Hrrrrr are the sums of the products of all groups of correlations which, 
represented by paths, form closed figures, triangles, quadrilaterals, and 
pentagons, respectively. 2r2rrr is the sum of the products made by 
multiplying each triangle of correlations in the sense above by the sec- 
ond power of those correlations which do not involve any of the vari- 
ables in the triangle. The number of terms of each kind is given above 
the brace, where it is more than one. 

HAB) 1—r2 (2 terms). 

<t>(ABQ      = 1 - 2r2 + 22m' (5 terms). 

<t>(ABCD)   = 1 - 2r2-f 22fTr-22mT + 2fV2 (17 terms). 

10       10 15 12 15 10 

<j>(ABCDE) = i— 2r2+22nT— 22mT+22myr+2rfy2 — 22r2m' (73 terms). 
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The formulae for degree of determination by residual factors may be 
written as follows : 

dx.0 = <t>(XA) in system XA. 

dx.o= Mi AB)   in systenl XAB' 

7        ^{XABC) . vATir 
dx.0 = -±/ABC\   ln system XABC. 

,        tiXABCD) . .       vAu^n 
dx.o=  \t\BCD)   in s>'stein XABCD 

The degree of determination by the known causes is now easily cal- 
culated. When all causes of variation in X are constant except A, 
variation of X is measured by O-'-CB^X 

an(l variation of A is meas- 
ured by O-'-CB^A* writing the constant factors as subscripts to the left. 
Assuming that the relation between A and X is linear, the deviation of 
X determined by a unit deviation of A should be constant, whatever the 
amount of variation in A.    Thus : 

u        V*       ^X-A       O-'-CBfrx 
FX-A— ^ ~z- = — * 

"A "A (VCB^A 

In the case of the residual factor Ot assumed to be independent of the 
known factors A, B, C, etc., ...CBA^O^^C» 

and we have ^.o^ ...cWx 

_<l>(XABC...)^<T\.0__...CBAa\ 
ax-0      ¿(ABC.)        a\ a\    ' 

Thus: 
4>(XABC...) 2 

K(T\ = - (¡>{ABC...) 

This should be the general formula for the squared standard deviation 
with a number of constant factors. 
Hence : 

a\.A_MXB^"'0) 2    /<t>(ABC...O) 
a\        0(£C...0)  aV    <f>(BC...Ö) 

X-A    <t>(ABC...O) * x 

Px'A    M <t>(ABC..:0) 

_<t>(XBC...O)    <t>(XBC...)-dx.0ct>(BC...) 
X-A    (¡>(ABC...O) MABC...) 

17777°—21- 
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The general formula for partial correlation can easily be expressed in 
the present terminology. 

DCBAU   X       DCB"   X *ax(l- J 
o    _r     i,CBA<rV_T     ct>(XABCD)<t>(BCn) 

^   XA WB^X 4>(ABCD)<t>(XBCny 

In some cases it may be of interest to find the degree of determination 
when a number of factors not in the direct path between cause and effect 
are assumed constant. 

S^X-A 
UTS

0
" X*A      (o«"VTS...cn0" XHUTS

0
" A) 

0-"UTS.-.CB O-
2
A) (UTS0-

2
X) 

= <t>(XBC...STU.. .0)<t>{ASTU) 
<¡>(ABC..SW)<t>(XSTÜ) 

RELATION  TO   MUI/lTPUv  CORRELATION 

The expressions defined as <j)(XABC...), etc., suggest the expansion of 
determinants.    It  is  in   fact   easy   to   show   that   (j)(XABC.. .N) = A. 

Where 

'AX 

'  IIY ' 1 

^'NV     r. 

'XA 'XB 

i        rKn 

NX ' NA 

The formula for Pearson's coefficient of multiple correlation has already 

been   given,   RXUBCO) 
= -\/ l ~ T— where Axx  is   the  minor made  by 

Y Axx 
deleting row X, column X. 

Evidently in this class of cases the coefficient of determination degen- 
erates into a function of the coefficient of multiple correlation. For the 
degree of determination by residual factors we have 

4>(XABC...) _   L 
~~ <I>(ABC...)   "A, 

i - R2 
X(ABC'«0 

in agreement with Pearson's results. 
For the degree of determination by a known factor we have 

¿X-A^ 
fKXBC.O)    <t)(XBC...)-dx.0<l>(BC...) _ AAAAXx-AAA 

(t>(ABC...O) 

A2 
^ XA 

"A2 
1-*   YY 

4>(ABC...) 

PX-A 
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The last formula brings out the close relation between the path eoeflî- 
cients and multiple regression. As already noted, the most probable 
deviation of X for known deviations of A, B, C, etc., is given by the 
formula 

X'    A   A'     A   B' A' Bf 

— = ———+ -T— —Px'A—+Px'n-  
^X AxX^A ^XX^B ^A ^B 

As already stated, Pearson's coefllcients of multiple correlation and 
regression were not devised especially for the analysis of causal relations. 
The formula for multiple regression, for example, gives the most proba- 
ble value of one of the variâtes for given values of the others regardless 
of causal relations. In cases in which all the correlations are known 
in a system including an effect and a number of causes the method can 
be used to find the path coefficients and the degrees of determination 
of the effect by each cause in the sense used in this paper. Such cases 
in which the direct methods can be used are, however, relatively 
uncommon. Where the system of paths of influence is at all com- 
plex, involving perhaps hypothetical factors, the causal relations can 
be analyzed only by the indirect method of expressing the known cor- 
relations in terms of the unknown path coefficients, making the sums of 
the degrees of determination unity and solving the simultaneous equations. 

PART II. APPLICATION TO THE TRANSPIRATION OF PLANTS 

A large body of experimental data on the factors which affect the rate 
of transpiration in plants has been published by Briggs and Shantz (2). 
These data are well adapted for use in illustrating the methods of analyz- 
ing causal relations presented in part I of this paper. 

The experiments which are used in this paper were conducted at 
Akron, Colo., in 1914. A variety of crop plants were grown in sealed pots. 
The total transpiration was measured each day. Among the environ- 
mental factors studied were the total solar radiation during the day, the 
wrind velocity, the air temperature (in the shade), the rate of evaporation 
from a shallow tank, and the wet-bulb depression (sheltered from sun but 
not wind). The correlations between the daily transpiration of each kind 
of plant and the integrated values of the environmental factors were pub- 
lished by Briggs and Shantz. In order to avoid the effect of seasonal 
change in the plants, the logarithms of the ratios of the transpiration on 
succeeding days were correlated with similar figures for the various factors. 
The correlations between the various environmental factors for the 100 
days from June 18 to September 25, 1914, have been calculated by the 
writer from the data presented by Briggs and Shantz. This period covers 
all the crop periods but is longer than most of them. None of the corre- 
lations appeared to depart much from linearity. 
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The daily averages, the standard deviations, and the correlations are 
given in Table I. 

TABLIî I.—Daily averages,  standard deviations,  and correlations from  experiments on 
transpiration in crop plants made by Briggs and Shantz at Akron, Colo., IQ14 

CORRIvLATlONS 

Wind  
Radiation  
Temperature  
Wet-bulb depression  
Evaporation  

Small grains«  
Rye  
SorRhum, millet^  
Sudan grass (in inclosure). 
Sudan grass (in open)  
Dent corn  
Algerian corn  
Cowpea, lupine c  
Alfalfad  
Amaranthus  

Wind. 

-o. 01  ±0.07 
- .02 ±  .07 

.28 ± 

.38 ± 

. 22 ± 
• IQ ± 
.2l8± 

•52 ± 
•32   ± 
.28   ± 
•33 ± 
•335± 
. 290± 
. 04 db 

.06 

.06 

.04 

. 10 

. 041 

.07 

.08 

.08 

.09 

.057 
•035 

-o. 01   ±0.07 

•47 ± 
.48 ± 
.68 ± 
•'65 db 
.65 ± 
•57o¿ 
•55 ± 
.52 ± 

«. S2 db 
.62 ± 
.57o± 
•430± 
. 40 ± 

. 030 

.06 
• 07 
06 

.06 

. 042 
• 030 
.09 

Température. 

-o. 02 

•47 

i: o. 07 

± -os 

• 73 
•653 
.84 
.81 
• 71 
• 79 
• 675 
•495 
•45 

Wct-lnill) 
depression. 

>. 28 ±0. ( 
.48 db •( 
• 59 ±   • < 

.'¿j'db'.'c 

.88 ± .( 
•94 ± •< 
. 7881b .< 
.83 ± .c 
.85 ± .c 
.81 ± .c 
.88 ± .c 

. 7«5± -c 

. 7oo±. c 

.60 ±   .c 

I evapor- 
ation. 

0. 3« ±0 .06 
. 68 ± .04 
.S6 ± •os 
•83 ± 02 

.87 ± .02 

.91 ±  .02 

. 7i3± • 021 
•93 ± -oí 
.82 Û: .03 
. 7Q ± . 03 
.85 ± .03 
• 775± -025 
. 70S± . 019 
.56  db   .06 

Mean. <T 

Evaporation (shallow tank) (kilograms per square meter)  9. 70 2. 76 
Integrated radiation (calories per square centimeter)  753 134 
Air temperature, integrated mean (degrees Centigrade)  20. 10 3. 48 
Integrated wet-bulb depression (hour degrees, Centigrade)  143 58 
Wind velocity (miles per hour)  5. 54 2. 24 

a Averages of six similar correlations involving Kubanka and Caígalos wheat, Swedish Select and Burt 
oats, Hannchen barley, and spring rye. The last, having on the whole the largest correlations, is also given 
separately. 

b Averages of four correlations, Minnesota Amber and Dakota Amber sorghum and Kursh and Siberian 
Millet.   These correlations were all very similar. 

e Average of the similar correlations for cowpeas and lupine. 
d Average of four tests with alfalfa. 
«Published as + 0.80, which seems too large.   Recalculation gives -f- 0.52. 

^> 

FIG. 14.—Relations between wet-bulb depression 
(B), wind velocity (IV), radiation (R), and tem- 
perature (70 as assumed for direct analysis. 

It will be interesting first to com- 
pare the direct and indirect methods 
of calculating path coeflicients and 
coefficients of determination. Let us 
consider the relations ol wet-bulb 
depression (B) to temperature (T), 
wind velocity (W))aná radiation (R). 
Since the direct methods are only 
applicable hi systems in which each 
variable is connected with every 
other variable, the diagram of rela- 
tions is as shown in figure 14. 
Outstanding factors, independent of 
W, R, and T are represented by O. 
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INDIRECT  METHOD 

Six equations can be formed, expressing the six known correlations in 
terms of the unknown path coefficients. A seventh equation represents 
the complete determination of B by W, R, T, and O. 

(1) fBw=     o.28 = w+t(c-\-bs)-{-ub. 
(2) rmi=        .¿{S=='wb-{-tsJrti. 
(3) rBT=        .59 = w(c + bs) + t-\-us. 
(4) *VR=-   .01 = 6. 
(5) ^VT= -   .02 = c-\-bs. 
(6) rnT==        47 = s. 
(7) O2 + W2 + t2 + U2 + 2'W/(C + 6^) + 21VUb + 2?f/.9 = I. 

The values of b and s are given directly from equations (4) and (6), 
and the value of c (=—0.0153) can then be obtained from (5). The 
solution of (1), (2), and (3) gives w = 0.2921, t = 0.4735, and ?t = 0.2604. 
Finally, from (7) we obtain o2 = 0.5138 as the degree of determination by 
outst anding factors. 

dlvo = o2 = 0.5138 
dR.w = w2 = .0853 ^„.W = W = 0.292I 
dB.T=t2 = .2242 pn'T=t  =    .4735 

dn'Ti = u2 = -0678 PVR = U=    .2604 
d]i.-~= 2wt(c+bs) = —   .0055 
dn.^t = 2wub =-   .0015 
d]i.-RT=2tUs =       .1159 

1.0000 

DIRECT  METHODS 

According to the formulae given in part I we have— 

_<^{BWRT) 
0,0     f(WRTJ 

_<KBRT)-dB.0<l>(RT) 
ü'w ■ <p(WRT) 

_<t>{BWT)-dn.0<t>(WT) 
B,R <t>{WRT) 

= 4>(BRW)-dB.0<l>(RW) 
B'T <I>(WRT) 

where 
<t>(BWRT) = 1 - r2

nw+ 2rBWrWRrRn- 2rliWrvniriurTn + r2^wr
2
Kv 

- ^2
BR + 2f BWrwTrTB - 2rBwrwT^TitrRB + r2ijKr2wT 

- r2irr + 2rBRririrTB - 2rBRrRWrWrrTij + ^BT^WR 

-^2wR+2rWRfUTrTw 
- r WT 

<t)(WRT) = 1 - r2
WR- r2wT- f3RT+ 2rwRntTrTw 

(^(.BPFi?), etc., are analogous to 0(IV/?T) 
0(^T) = 1 -r2

TR   «¿(WT), etc., are analogous to 0(/?T). 
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By substitution of the correlations in these formulae the following 

results are obtained: 

(¡)(BWRT) = 0.4002 
<i>(BWR)   =  .6884 <1>(BW) = 0.9216 </)(Pl//^) = 0.9999 
ct>(BWT)   =  .5665 0(5^) =  .7696 <1>(JVT)=  .9996 
ct>(BRT)    =   .4668 0(£T) =  .6519 0(/2T) =   .7791 
<t)(WRT)   =  .7788 

These give values of the coefficients of determination identical with 
those given by the indirect method. 

This method, as was shown in part I, is essentially the same as Pear- 
son's method of calculating multiple regression. 

LetA = 

Let 

I ^BR fBT ^'BW 

f'RB I ^RT rnw 

I'TB f'TR I fTW 

fWB Tyfii rwT I 

.48 

.59 

.28 

0.48 
I 

.47 
— .01 

0.59 
.47 

I 

— .02 

0.28 
— .01 

— .02 

I 

ABB = A with column B, row B, deleted. 
A

BB = 0.7788, ABR = 0.2028, ABT = 0.3687, Aj 

PB-V -0.2921 dß-o — ~ 

0.2275 

0.5139 

= 0.4002 

PB-X = 0.2604 

. ABT 
/?B-T = -r~:=a4735. 

These values are identical with those obtained by the preceding 
methods. 

It will be seen that the first method, while apparently less direct than the 
others, is really less laborious. The solution of three simultaneous equa- 
tions requires merely the evaluation of a determinant of the third order 
instead of one of the fourth order, as in the last method. The expression 
(¡){BWRT) in the second method is, of course, merely an expansion of 
the same determinant of the fourth order as that used in the last. The 
indirect method, moreover, gives more insight into the processes followed 
than the others in which there is a substitution in what appear to be 
arbitrary formulae. In line with this last point, the indirect method is 
more flexible in that it can be used to test out the consequences of any 
assumed relation among the factors. 

ANALYSIS  OF  CAUSAL  RELATIONS 

In attempting to interpret the present results in terms of causation, 
we see at once that the scheme of relations chosen is not a very satis- 
factory one. The wet-bulb depression was measured under shelter. Con- 
sequently the coefficient of determination, í/B.R = 0.0678, can not measure 
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the degree of direct determination by radiation, but determination by 
some factor other than wind or temperature with which radiation is 
correlated. 

One should not attempt to apply in general a causal interpretation to 
solutions by the direct methods. In these cases, determination can usu- 
ally be used only in the sense in which it can be said that knowledge of 
the effect determines the probable value of the cause. This is the sense 
in which Pearson's formula for multiple regression must be interpreted. 
If PF', T', and R' are given deviations of wind, temperature, and radiation 
from their mean values, the most probable value of the wet-bulb depres- 
sion, B*', is given by the following formula: 

_  —  _.   PB-W^      PB-RT      PB-T- 

This formula can only be used for conditions which are similar to those 
for which the values of the path coefllcients were calculated. If path 
coefficients were calculated in a sys- 
tem which truly represented the 
causal relations, the formula would 
give the value of the wet-bulb de- 
pression under any set of conditions 
in so far as it is determined by the 
factors considered. 

The causal factors which actually 
determine wet-bulb depression are 
temperature, absolute humidity (//), 
and wind velocity (fig. 15). Radia- 
tion can be introduced into the scheme 
as a factor correlated with these causal factors. Wind velocity is cor- 
related to such a very slight extent with temperature and radiation that 
its correlation with absolute humidity can probably be neglected without 
serious error. The relations between radiation, temperature, and abso- 
lute humidity are undoubtedly very complex. Radiation has a direct 
positive influence on temperature. Both radiation and temperature have 
positive effects on absolute humidity by increasing evaporation. Cor- 
relation between absolute humidity and temperature would be expected, 
because with reduced temperature the saturation point is reached at a 
lower absolute humidity and the excess moisture is precipitated. In- 
crease in humidity, on the other hand, tends to reduce the radiation 
which reaches the earth, and directly or indirectly this has a negative 
influence on all three of the correlations. 

There are not enough data to estimate the importance of all of these 
paths of influence. Even if we represent the complex of paths connecting 
//, R, and T merely by three correlations, the diagram has eight paths to 
solve.    The six correlations between B, IV, R, and T and the statement 

FIG. 15.—Relations between factors of fiRiire 14 
and absolute humidity (//) cxprcssiiiR causal 
relations better than fiRure 14 but adapted only 
to indirect analysis. 
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in regard to complete determination of B by IF, H0 and T furnish only 
seven equations. 

Fortunately, data are given in another paper by Briggs and Shantz (j) 
from which an eighth equation can be derived. In this paper the average 
value of each of the measured factors is given for each hour of the day. 
The cycle of changes in wet-bulb depression follows very closely the 
changes in temperature. In fact, there should be very little, if any, 
regular hourly cycle of changes in absolute humidity, so that the wet- 
bulb depression should be wholly determined by the temperature changes 
except for some influence of wind velocity. 

Let pB.T = t be the path coefficient which measures the relative influence 
of temperature on wet-bulb depression in the variations from day to 
day. Let pB.ii = h, pB.w = 'W, and let aT, an, aw, and an be the standard 
deviations of the daily difTerences in the various factors and in wet-bulb 
depression. Let T'—T", etc., be the actual difTerences in temperature, 
etc., at certain times. The diiTerence to be expected in wet-bull) 
depression, B'—B", is as follows: 

B'-B"    T'—T"   , W'—W"    , //'-//", 
Vu Or trw (Tu 

While ty w, and h are assumed to measure the relative influence of tem- 
perature, wind, and humidity in the variations from day to day, the 
foregoing formula should apply under any conditions, if t, w, and h were 
calculated  from   a  system   which   represented   truly  causal   relations. 

The expression —t is shown in  part I to give the change in wet-bulb 
(TT 

depression (B) directly caused by a unit change in temperature.    The 
relative importance of the various factors in determining the variations 
from hour to hour is very different from that from day to day, but the 
change in wet-bulb depression caused by unit changes in temperature, 
wind velocity, or absolute humidity should always be the same so long 
as the relations are substantially linear. 

The greatest difference, in temperature within an average day in the 
data was between 5 a. m. and 3 p. m.    This is given as 32.7o F., or 
18.167o C.    The difference in wet-bulb depression between these hours 
was 21.80 F., or 12.1110 C.    The difference in average wind velocity was 
2.5 miles per hour.    The standard deviations of the daily variations have 
already been given.    0^ = 3.48 day degrees C, <r1j = 58 hour degrees C. 
integrated for 24 hours.    This means 2.4167 degrees C.    o-w = 2.24 miles 
per hour.    We will assume that there is no difference in absolute humidity 
(//'—•/-/" = o).    Substituting those values in the formula for wet-bulb 
depression, we get 

12.111    18.167, , 2.50 

2Al^7      348       2.24 

5.0114 = 5.2204^+ i.nGiw. 
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We now have eight equations from which to find eight unknown path 
coefficients. 

(i)'rBW=   o.2S = 'W'\-tc. 

(2) f'BR =     .48 = ts + bw+ah. 

(3) 'BT =     .59 = t-\-dh + wc. 

(4) rWR= —.01=6. 

(5) ?VT = —.02 = C. 

(6) rRT =     .47 = ^ 

(7) w2 + h2 + t2+2wtc+2htd=i. 

(8) 5.0114=5.2204/+ 1.1161W. 

liquations (4), (5), and (6) give b, c, and s directly.    Solution of (1) and 
(8) gives / = 0.8963, 'w = 0.2979. 

From (2)    ah=    0.0617 
From (7)      h2=      .6570, ^=—0.8105, a =—0.0761 
From (3)     dh = — .3003,   <i=       .3706 

í'HH = Ii-\-td=— 0.4784. 

The coefficients of determination, the path coefficients, and the corre- 
lations are thus as follows: 

dB.T  =   0.8034 /?B.T    = O.8963 ^BT =   0.5900 

<*B-H    =         .657O PB'H = - -.81O5 run = — 4784 
</B.w   =         .O888 /?B"WS= .2979 ^BW^         .280O 

^B-S= —.5384 
^B.^= —.OIO7 rHB= —.0761 

I.OOOI rRT=     .3706 

nrr =      .4700. 

It turns out that the differences between different days in wet-bulb 
depressions are due to a somewhat greater extent to differences in tem- 
perature (0.80) than to absolute humidity (0.66). The variation in wet- 
bulb depression would be much greater were it not that these factors 
vary together but act on wet-bulb depression in opposite directions and 
so tend to balance each other (dB.^ = — 0.54). Temperature shows a 
rather strong positive correlation with absolute humidity (0.37) as well 
as with radiation (0.47), but the various paths of influence between 
radiation and absolute humidity almost balance each other (r1IR = —0.08). 

These results can now be used in finding the relative importance of 
the various factors which determine evaporation or transpiration. In 
figure 16, X may represent either evaporation or the transpiration of 
any plant. Radiation must be considered as a direct causal factor in 
these cases. 
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The following four equations can be made with which to solve the 
path coefficients from Wy H, R, and T to X: 

rx w = w '       + / 'c    + w'fr 

rXR =7£;,/)     +/'.$'     +uf      +h'a 
rXI1 =WVBW + /VIíT + ^VBR + /¿VB1I. 

Substituting the values already found for a, h, c, d, iv, h, t, and rmi, 
we have 

^xw^ + i.ooze;'—0.02t'—o.om' 
rxT = —  .02wf-\-1.00/'+   .47^' +0.3706/7-' 
fXR = —  .01 Te//+   .47^+1.001*'—  .oyGih' 

*XB=+    .28W/+    .59^+    .481^—    .4784//. 

The solution is as follows : 

w' = Px'w = + 0.997 irxw + o.oi43rxT—0.002 2rXR + 0.0114;XH 

t' = Px-T =— .2207rxw+ .8943^x1— .8I75>'XR+ .8228rXB 

u' = t}x-n==+ .i488rxw— .3633'XT+I.4
1
55'*XR— .5o67'xi» 

h' = Px-ii=+   .46o7rxw+   .7468rxT+   .4IO
7^XR"-1 •5772''xir 

It is merely necessary to substitute the values of the correlations of 
evaporation or transpiration with wind velocity, temperature, radia- 

tion, and wet-bulb depression, as 
given in Table I, to find the four 
path coefficients in each case. The 
results are given in Table II. These 
have all been checked by substitu- 
tion in the fourth equation (VXH= + 
o^Sw'+ 0.59^+ 0.48^'—0.4784///). 
Thecorrelationbetween evaporation 
and the transpiration of any plant 
can be deduced from the formula 
rXE = 7c/VEW + /VKT + WVER + /?/rEIl. 
The correlations of evaporation with 
wind velocity, temperature, and 
radiation have been given in Table I 
as 0.38, 0.56, and 0.68, and that 

with humidity can be calculated by the formula rEn = pE.n-\-apE.Sl-\- 
dpE.>s= —0.2651. Thus rXE= 0.38W' + 0.56/' + o.68u'— 0.2651^'- f^e 
calculated results in column 6 of Table II are compared with actual 
correlations between evaporation and transpiration in column 7. The 
correlation of evaporation with itself comes out 0.839 by this for- 
mula. There should, however, be an additional term (/VO'EO) 

m tlie 

formula to allow for correlation through other factors (O) than IF, T, 
Rf and H.    From Table III we find that evaporation is determined 

FIG. 16.—Relations between evaporations or trans- 
piration (X) and the system shown in figure 15. 
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to a considerable extent (dE.0 = o.i6i) by outstanding factors. The addi- 
tional term in this case would have this value and when added to 0.839 
gives i, as it should. With one exception, the calculated correlation 
between transpiration and evaporation is a little smaller than the actual 
correlation. This means either that there is some additional factor 
which should be allowed for or else that the path coefficients with W, T, 
R, and H are not given quite their due weight, owing perhaps to lack of 
complete linearity in the correlations. 

TABLE II.—Table of calculated path coefficients 

Wet-bulb depression  
Evaporation (shallow tank) 
Transpiration: 

Small grains  
Rye  
Sorphum and millet.... 
Sudan grass (inclosure). 
Sudan grass (open)  
Dent com  
Algeriau corn  
Cowpea and lupine  
Alfalfa  
Amaranthus  

Average transpiration  

/»X.W 

o. 298 

•395 

.238 

. 209 

• 234 
• 539 
•339 
. 297 

•349 
•351 
•303 
• 052 
.279 

Tempera- 
ture. 

/>X.T 

1.896 
•544 

• 779 
• 853 
.718 
.870 
.928 
.815 
.851 
. 710 
.603 
• 560 
• 733 

Radia- 
tion. 

px.n 

■ 059 
. 109 

• 194 
.214 

• 117 
• 105 
. 181 

Absolute 
humidity. 

fix.y 

-o. 811 

-  -437 

489 
583 
421 

216 

3 75 

405 
391 
346 
424 

42S 

Correlation with 
evaporation. 

Calcu- 
lated. 

o. 830 

(• 839) 

• 741 
• 838 
. 788 

• 751 
•844 
. 768 

• 645 
•518 

• 751 

Actual. 

0.83 
1. 00 

•85 
• 775 

• 560 
.781 

TABI,IO III.—Coefficients of determination 

Wet-bulb depression  
Evaporation  
Transpiration: 

Small grain  
Rye  
Sorghum and millet.. 
Sudan (inclosure)  
Sudan (open)  
Dent com  
Algerian corn  
Cowpea and lupine  
Alfalfa  
Amaranthus  

Average transpiration  

Wind 

dx.w 

o. 089 

.156 

•057 
.044 

• 055 
. 290 

• 115 
.088 

. 122 

• I23 
. O92 

.OO3 

.O78 

Tem- 
pera- 
ture. 

o. 803 
. 296 

. 607 

.728 

.516 

• 757 
. 861 
.664 
.724 
• 504 
•364 
•314 
• 537 

Radi- 
ation. 

o. 156 

. 062 
• 043 
. 041 

.017 

• 003 
. 012 

• 038 
. 046 
.014 

. on 
• 033 

Abso- 
lute 
hu- 

mid- 
ity. 

o. 65 7 

. 240 

•340 

• 177 
.047 

. 141 
. 164 

• 153 
. 120 

. 180 

.183 

.176 

Joint determination. 

dx.WT rfx.WR dx.rn dx .m 

— 0. on O 0 -0.538 
- .009 — • OO3 0. 202 - .176 

- .007 _ . OOI . 182 - • 283 
— . 007 — . OOI . 166 -  .3i>9 
— . 007 — . OOI • 137 —   . 224 
- .019 — . OOI . 106 -   . 140 

- -013 — . OOO . OSI -  • 258 
— . 010 — . OOI .084 -  . 244 
— . 012 — . OOI • 155 -  • 247 
— . 010 — . 002 • 143 -  . 182 

— . 007 — . OOI .067 —   . 190 
— . 001 — . OOO • OS5 -  . 178 
— . 008 ~~ . OOI . 124 -  .228 

i/x.mi 

.019 

.018 

004 
003 

Residual. 

• i?5 
.038 

• 293 
. 062) 
. 096 
• 237 
• 057 
• 247 
•474 

The coefficients of determination are given in Table III. The differ- 
ence between their sum and unity is given in the last column as (/x.0, 
the determination by outstanding factors. As suggested above, the 
assumption that all the fundamental correlations are linear may involve 
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some error which would tend to underweight the coefficients of deter- 
mination between transpiration and the known factors and so over- 
weight the apparent degree of determination by outstanding factors. In 
certain cases, however, the residue is so small, in one case actually com- 
ing out negative, that it is probable that this is not an important source 
of error. The residual determination is greatest for' the crops which 
were cut twice during the season—namely alfalfa and amarantlms. 
There were considerable periods following each cutting during which the 
absolute value of the transpiration was small. 

Wind velocity has about the same relative value as a factor in deter- 
mining transpiration as it has in determining wet-bulb depression. Its 
relative importance is a little greater for determining evaporation from 
the shallow tank. 

Temperature is somewhat more important than absolute humidity in 
determining the variations in wet-bulb depression and rale of evapora- 
tion from day to day. It is very much the most important factor in 
determining.the rate of transpiration in all the plants. 

Radiation is an important factor in evaporation, coming out equal to 
wind velocity and only slightly less important than absolute humidity. 
In the plants, on the other hand, it is almost a negligible factor. 

Comparing transpiration in the average plant with evaporation in the 
sun from a shallow tank, we find that the former is influenced relatively 
much more by temperature, to about the same degree by absolute 
humidity, somewhat less by wind velocity, and very much less by radia- 
tion. The four factors are much more nearly equal in importance in the 
case of evaporation (^.1 = 0.30, í/E.II = o.i9, <¿E.W = O.I6, (iE.R = o.i6) than 
in the case of transpiration (C/X.T = 0.55, í¿X.1I = O.I8, dx.w= 0.09,c/x.R = 0.04). 
In comparing the importance of these factors it should be added that 
radiation has an importance somewhat in excess of its direct influence, 
in that its variations are correlated with those of temperature. Humidity 
has reduced importance, since, though correlated with temperature, it 
affects evaporation and transpiration in the opposite direction. 

OTHKR APPLICATIONS 

The method of analysis presented here can readily be applied to the 
problem of the relative importance of heredity and environment. An 
application of this kind to the case of the piebald pattern of guinea pigs 
has already been published (9), and one to the resistance of the same 
animal to tuberculosis is in press.1 The method can be applied also to 
such a problem as the determination of the effects of various systems 
of mating, such as inbreeding, line breeding, and assortative mating on 
the genetic composition of an originally random-bred stock.2 

1
 WRIGHT, Sewall, and LEWIS, Paul A.   FACTORS IN THE RESISTANCE OF GUINEA PIGS TO TUBERCULOSIS 

WITH SPECIAL REGARD TO INBREEDING AND HEREDITY.   In Amer. Nat., v. 55.    1921.   In press. 
»WRIGHT, Sewall.   SYSTEMS OF MATING, I TO V.   In Genetics, v. 6.   1921.   In press. 
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